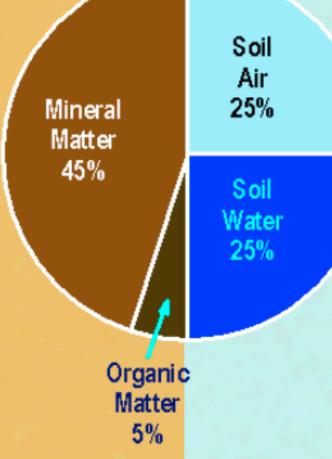
ADVANCE SOIL SCIENCE

Presented by: Michael Trevizo


Functions of agricultural soils

Anchor plant roots

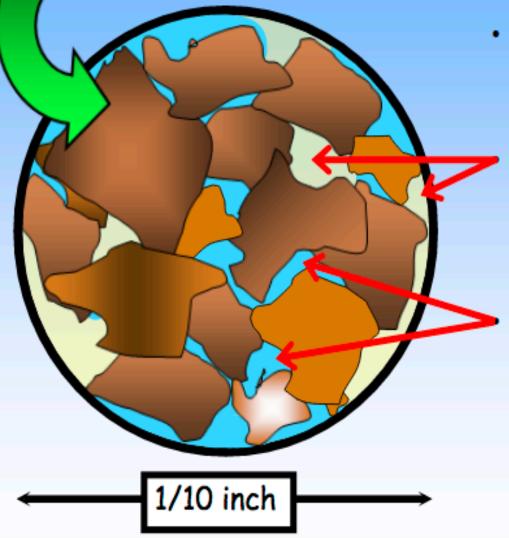
- Supply water to plant roots
- Provide air for plant roots
- Furnish nutrients for plant growth
- Release water with low levels of nutrients

Soil Components The 4 parts of soil

About $\frac{1}{2}$ of the soil volume is solid particles

About $\frac{1}{2}$ of the soil volume is pore space

Soil Texture


 The mineral part of soil consists of sand, silt, and clay particles

- The amounts of each size particle determines the textural property of the soil
 - Coarse textured, loose (more sand, less clay)
 - Fine textured, heavy (more clay, less sand)
 - Loamy (more even mix of sand, silt and clay

Soil Structure

The arrangement of sand, silt, and clay particles to form larger aggregates.

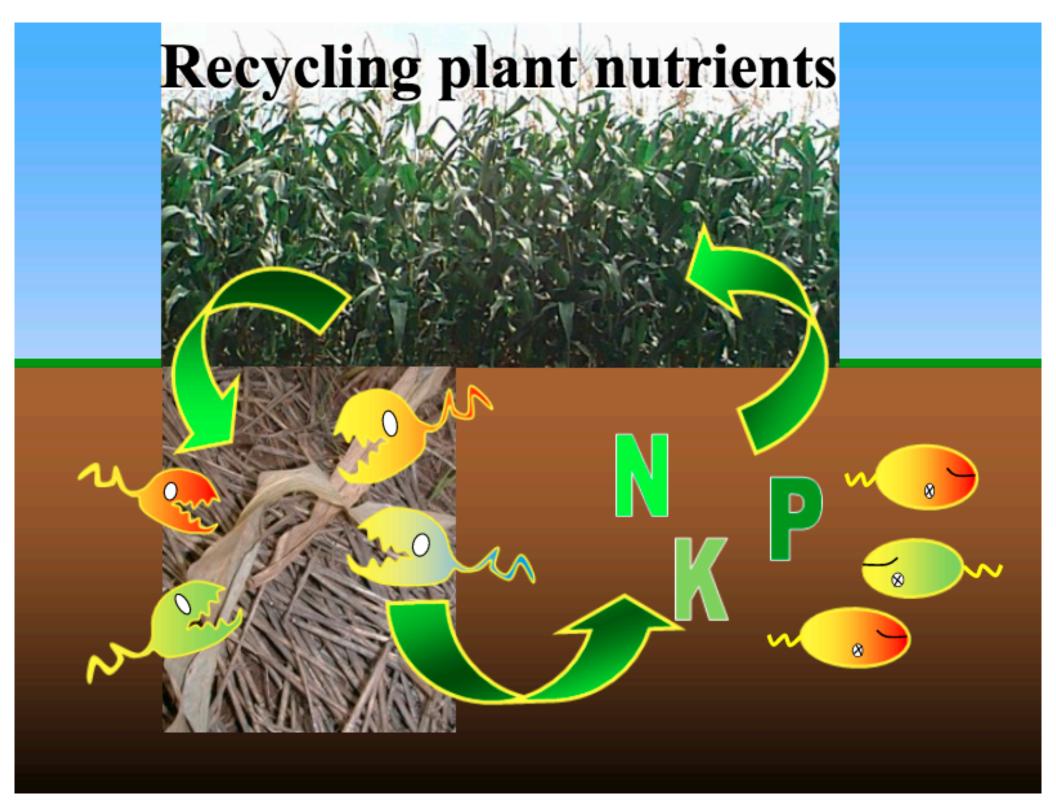
 <u>Organic matter</u> is the glue that holds the aggregates together

<u>Large pores (spaces</u>) between aggregates are filled with air in a moist soil.

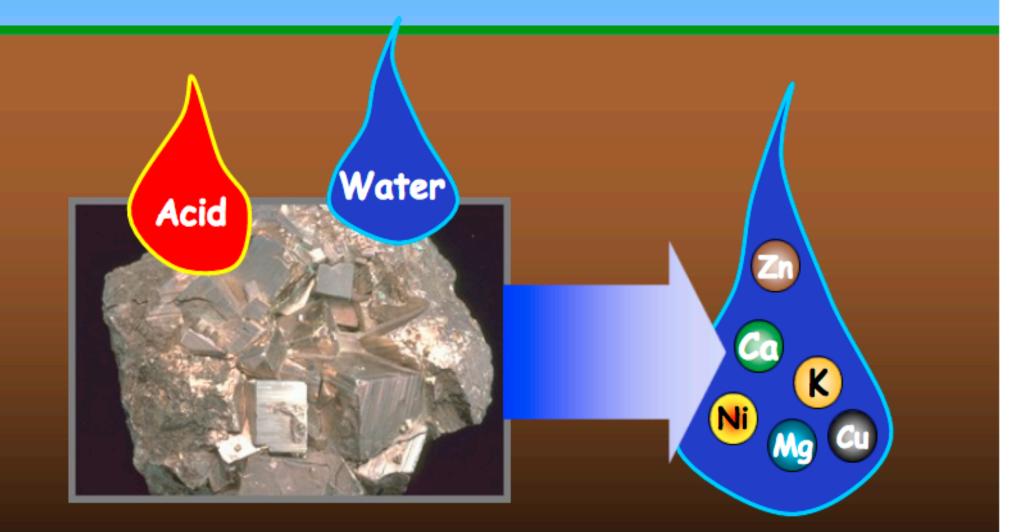
<u>Small pores</u> are filled with water in a moist soil. Even smaller pores inside the aggregates (not shown) are also filled with water.

Supplying Plant Nutrients

Nutrients that plants obtain from the soil

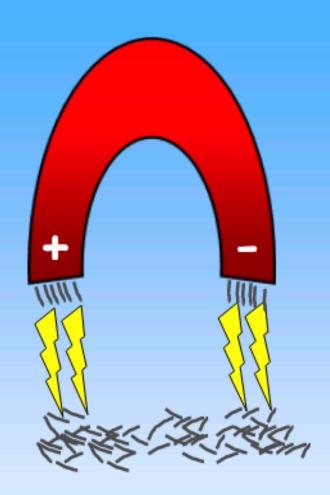

Macronutrients: (needed in large amounts) Nitrogen (N) Phosphorus (P) Potassium (K) Calcium (Ca) Magnesium (Mg) Sulfur (S)

Micronutrients: (needed in small amounts) Chlorine (Cl) Cobalt (Co) Copper (Cu) Iron (Fe) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Zinc (Zn)


Where do plant nutrients come from?

- Decaying plant litter
- Breakdown of soil minerals
- Addition by humans
 - Commercial fertilizer
 - Manure
 - Lime
 - Other

Breakdown of soil minerals



- Commercial fertilizers
 - Nutrients are in a form that is available to plants
 - Dissolve quickly and nutrients go into soil water
- Lime
 - Dissolves slowly as it neutralizes soil acidity
 - Releases calcium and magnesium
- Organic nutrient sources
 - Manure, compost, sewage sludge
 - Decay and nutrient release is similar to crop litter

The soil solution

- Soil water is a complex solution that contains
 - Many types of nutrients
 - Other trace elements
 - Complex organic molecules
- Nutrients in the soil solution can be readily taken up by plant roots

 If nutrients remained in solution they could all be quickly lost from the soil.

Adsorption

 <u>Adsorption</u> refers to the ability of an object to attract and hold particles on its <u>surface</u>.

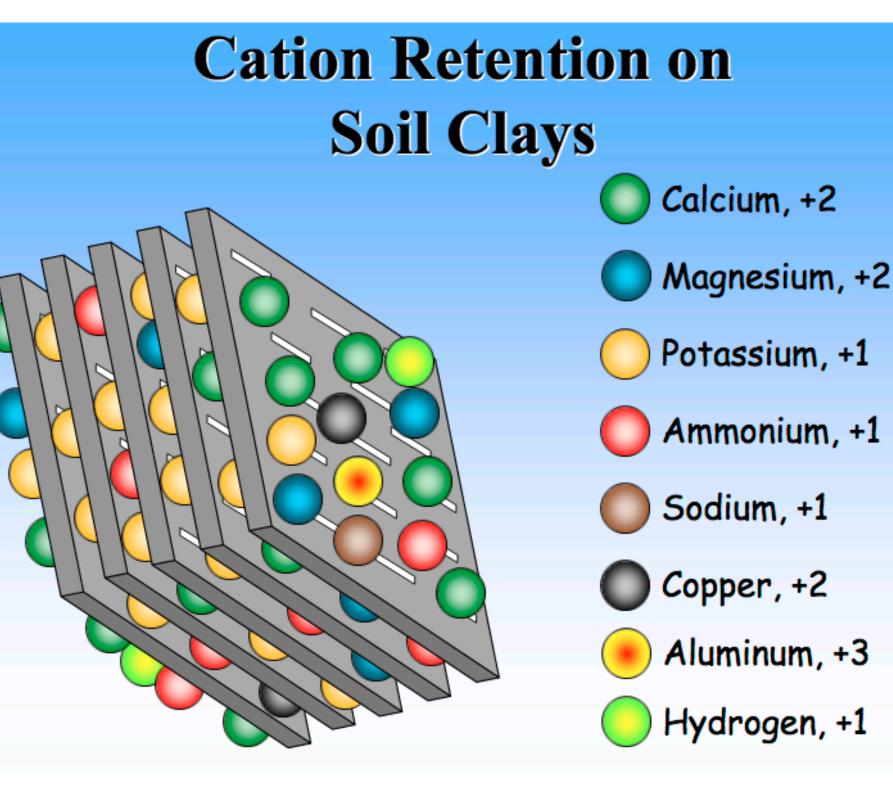
- Solid particles in soil have the ability to adsorb
 - Water
 - Nutrients and other chemicals
- The most important adsorbers in soil are
 - Clays
 - Organic matter

Surface area of clay

 $\frac{1}{4}$ cup of clay has more surface area than a football field

The large surface area of clay allows it to

- Adsorb a lot of water
- Retain nutrients
- Stick to other soil particles


Properties of Soil Clays

Clay particles are stacked in layers like sheets of paper.

Each clay sheet is slightly separated from those on either side.

Each sheet has negative charges on it. — —

Negative charges have to be balanced by positive charges called <u>cations</u>.

Cation Retention on Organic Matter

Hydrogen

Increasing pH increases cation exchange capacity of organic matter

Nutrients

Low pH, 4 - 5 (acidic soil)

Neutral pH, @7 ("sweet" soil)

Cation Exchange Capacity

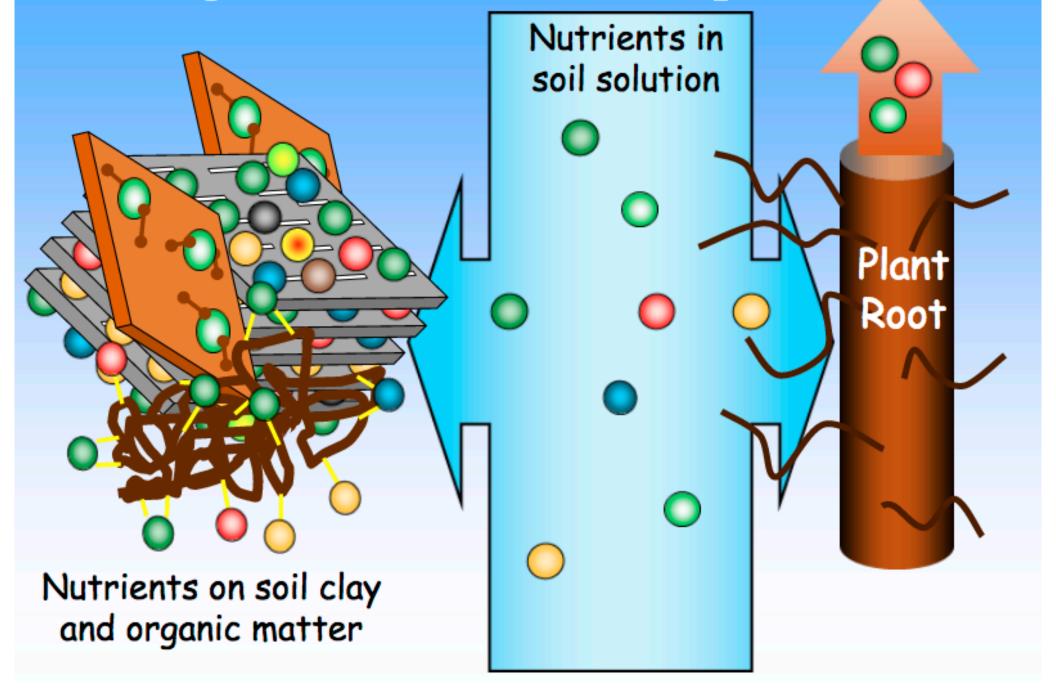
- Cation exchange capacity (CEC) is the total amount of cations that a soil can retain
- The higher the soil CEC the greater ability it has to store plant nutrients
- Soil CEC increases as
 - The amount of clay increases
 - The amount of organic matter increases
 - The soil pH increases

Negatively Charged Nutrients (Anions)

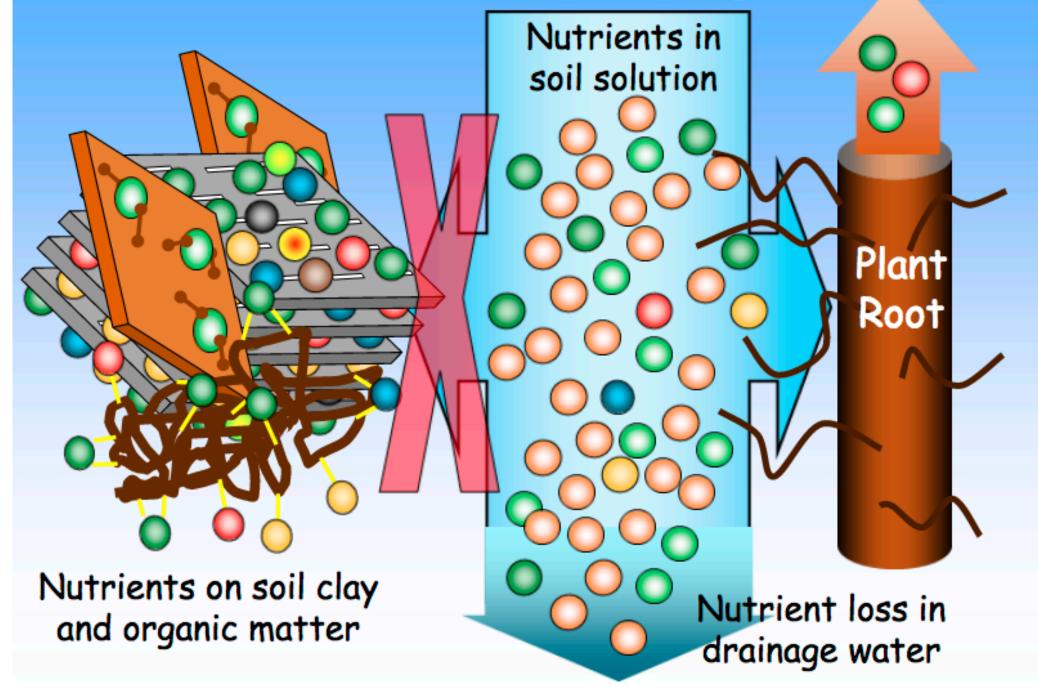
• Some very important plant nutrients are anions.

Phosphate

- Soils are able to retain some of these nutrient anions.
- Retention of nutrient anions varies from one anion to another



Phosphate retention in soil


Adsorption on oxide surfaces 3. Phosphate anions -Each held by two chemical bonds to the iron oxide surface Iron oxide surface

Moving nutrients from soil to plants

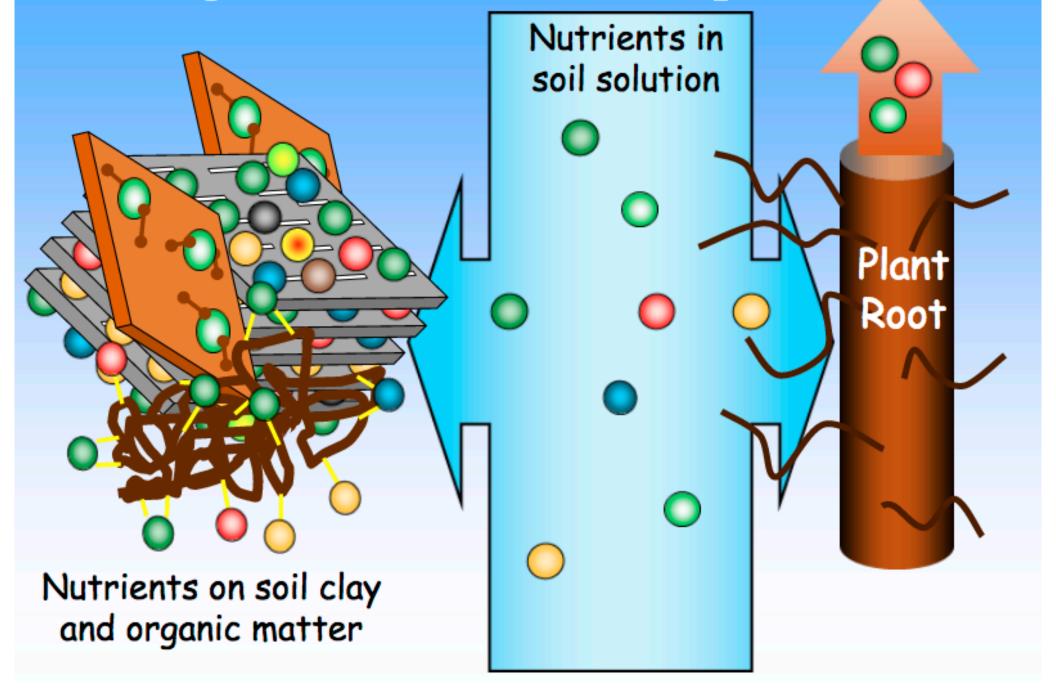
Excessive Nutrient Loading

The black box is open

- Soil consists of mineral and organic matter, air and water
- Soils are able to adsorb nutrients and other chemicals
- The most important adsorbers are clay and organic matter
- Adsorbed nutrients are available to plants
- Adsorbed nutrients are not prone to loss in drainage water
- Soil adsorption capacity can be exceeded leading to greater nutrient loss

BASIC SOIL-PLANT RELATIONSHIPS *CATION EXCHANGE CAPACITY(CEC)*

https://www.youtube.com/watch?v=HmEyymGXOfI



SO... NOW YOU KNOW CEC

- Base Saturation?
- What is it?
- % base saturation
- Soil nutrient balancing

Moving nutrients from soil to plants

BASE SATURATION

- Base saturation is the measure of total "bases" in the soil
- %Base saturation, is the % of a soils CEC that is occupied by a given nutrient

Job N Comp	lame: Five College		Soil Report Date: 7/29/2016 Submitted By:								
Sample	e Location		RDW	RDS	RD276	RD258					
Sample	e ID										
Lab Nu	ımber		34	35	36	37					
Sample	e Depth in inches		8	8	8	8					
Total E	xchange Capacity (M. E.)		6.24	4.94	5.27	3.95					
pH of S	Soil Sample		5.2	6.1	5.9	5.2					
Organie	c Matter, Percent		4.16	2.26	2.71	3.45					
ANIONS	SULFUR:	p.p.m.	21	15	15	22					
ANIC	Mehlich III Phosphorous:	as (P_O_) lbs / acre	2114	1505	1317	1186					
TIONS	CALCIUM: Ibs / acre	Desired Value Value Found Deficit	2261 1404 -857	1793 1766 -27	1912 1723 -189	1431 957 -474					
EXCHANGEABLE CATIONS	MAGNESIUM: Ibs / acre	Desired Value Value Found Deficit	239 184 -55	200 184 -16	202 224	200 73 -127					
EXCHAN	POTASSIUM: Ibs / acre	Desired Value Value Found Deficit	259 119 -140	205 101 -104	219 59 -160	200 81 -119					
	SODIUM:	lbs / acre	27	23	25	20					
s z	Calcium (60 to 70%)		42.22 9.22	66.96	61.27	45.47					
BASE SATURATION %	Magnesium (10 to 20%) Potassium (2 to 5%)		9.22	11.63 1.96	13.28 1.08	5.78 1.97					
ATU	Sodium (.5 to 3%)		0.69	0.75	0.76	0.82					
ISE S	Other Bases (Variable)		7.00	5.20	5.60	7.00					
BP	Exchangable Hydrogen (10 to 15	5%)	39.00	13.50	18.00	39.00					
S	Boron (p.p.m.)		0.37	0.37	0.37	0.37					
IEN	Iron (p.p.m.)		256	166	212	206					
ELEMENTS	Manganese (p.p.m.)		24	26	23	18					
111	Copper (p.p.m.)		3.56	2.38	9.19	10.9					
TRACI	Zinc (p.p.m.) Aluminum (p.p.m.)		9.01 1239	3.45 1281	6.49 1168	3.33 1289					
OTHER											
0											

Soils sample taken from a field

Job N Comp			Soil Report Date: 7/29/2016 Submitted By:								
Sample	Location		RDW	RDS	RD276	RD258					
Sample	: ID										
Lab Nu	mber	Verv	34	35	36	37					
Sample	Depth in inches	low	8	8	8	8					
Total E	xchange Capacity (M. E.)		6.24	4.94	5.27	3.95					
pH of S	oil Sample		5.2	6.1	5.9	5.2					
Organic	Matter, Percent		4.16	2.26	2.71	3.45					
SNO	SULFUR:	p.p.m.	21	15	15	22					
ANIONS	Mehlich III Phosphorous:	as (P_O_) 2_5 lbs / acre	2114	1505	1317	1186					
EXCHANGEABLE CATIONS	CALCIUM: Ibs / acre	Desired Value Value Found Deficit	2261 1404 -857	1793 1766 -27	1912 1723 -189	1431 957 -474					
	MAGNESIUM: lbs / acre	Desired Value Value Found Deficit	239 184 -55	200 184 -16	202 224	200 73 -127					
EXCHAN	POTASSIUM: Ibs / acre	Desired Value Value Found Deficit	259 119 -140	205 101 -104	219 59 -160	200 81 -119					
	SODIUM:	lbs / acre	27	23	25	20					
% 	Calcium (60 to 70%)		42.22	66.96	61.27	45.47					
VIIO	Magnesium (10 to 20%)		9.22	11.63	13.28	5.78					
TUR	Potassium (2 to 5%) Sodium (.5 to 3%)		1.84 0.69	1.96 0.75	1.08 0.76	1.97 0.82					
BASE SATURATION %	Other Bases (Variable)		7.00	5.20	5.60	7.00					
BAS	Exchangable Hydrogen (10 to 15	%)	39.00	13.50	18.00	39.00					
	Boron (p.p.m.)		0.37	0.37	0.37	0.37					
INTS	Iron (p.p.m.)	Voru	256	166	212	206					
TRACE ELEMENTS	Manganese (p.p.m.)		24	26	23	18					
	Copper (p.p.m.)	High%	3.56	2.38	9.19	10.9					
	Zinc (p.p.m.)		9.01	3.45	6.49	3.33					
T	Aluminum (p.p.m.)		1239	1281	1168	1289					
OTHER											

Soils sample taken from a field

Low soil pH is inversely related the soils %Base Saturation of Hydrogen; <u>Remember:</u> pH is a unit used to measure the concentration of Hydrogen

Logan Labs, LLC

Job N Comp	U		Soil Report Date: 7/29/2016 Submitted By:								
Sample	e Location		RDW	RDS	RD276	RD258					
Sample	e ID										
Lab Nu	ımber		34	35	36	37					
Sample	e Depth in inches		8	8	8	8					
Total E	xchange Capacity (M. E.)		6.24	4.94	5.27	3.95					
pH of S	Soil Sample		5.2	6.1	5.9	5.2					
Organie	c Matter, Percent		4.16	2.26	2.71	3.45					
ANIONS	SULFUR:	p.p.m.	21	15	15	22					
ANIC	Mehlich III Phosphorous:	as (P_O_) lbs / acre	2114	1505	1317	1186					
VIIONS	CALCIUM: Ibs / acre	Desired Value Value Found Deficit	2261 1404 -857	1793 1766 -27	1912 1723 -189	1431 957 -474					
EXCHANGEABLE CATIONS	MAGNESIUM: Ibs / acre	Desired Value Value Found Deficit	239 184 -55	200 184 -16	202 224	200 73 -127					
EXCHAN	POTASSIUM: Ibs / acre	Desired Value Value Found Deficit	259 119 -140	205 101 -104	219 59 -160	200 81 -119					
	SODIUM:	lbs / acre	27	23	25	20					
움	Calcium (60 to 70%)		42.22	66.96	61.27	45.47					
IIO	Magnesium (10 to 20%)		9.22	11.63	13.28	5.78					
URA	Potassium (2 to 5%)		1.84	1.96	1.08	1.97					
BASE SATURATION %	Sodium (.5 to 3%) Other Bases (Variable)		0.69	0.75 5.20	0.76 5.60	0.82					
BASI	Exchangable Hydrogen (10 to 15	;%)	7.00	5.20 13.50	18.00	7.00					
	Boron (p.p.m.)		0.37	0.37	0.37	0.37					
NTS	Iron (p.p.m.)		256	166	212	206					
E ELEMENTS	Manganese (p.p.m.)		24	26	23	18					
	Copper (p.p.m.)		3.56	2.38	9.19	10.9					
TRACE	Zinc (p.p.m.)	9.01	3.45	6.49	3.33						
F	Aluminum (p.p.m.)		1239	1281	1168	1289					
OTHER											

Soils sample taken from a field in the east coast with 40" annual precipitation

Extremely low pH on both fields

NOTE:

The two samples on the right where taken from the same field

Logan Labs, LLC

Cation Retention on Organic Matter

Hydrogen

Increasing pH increases cation exchange capacity of organic matter

Nutrients

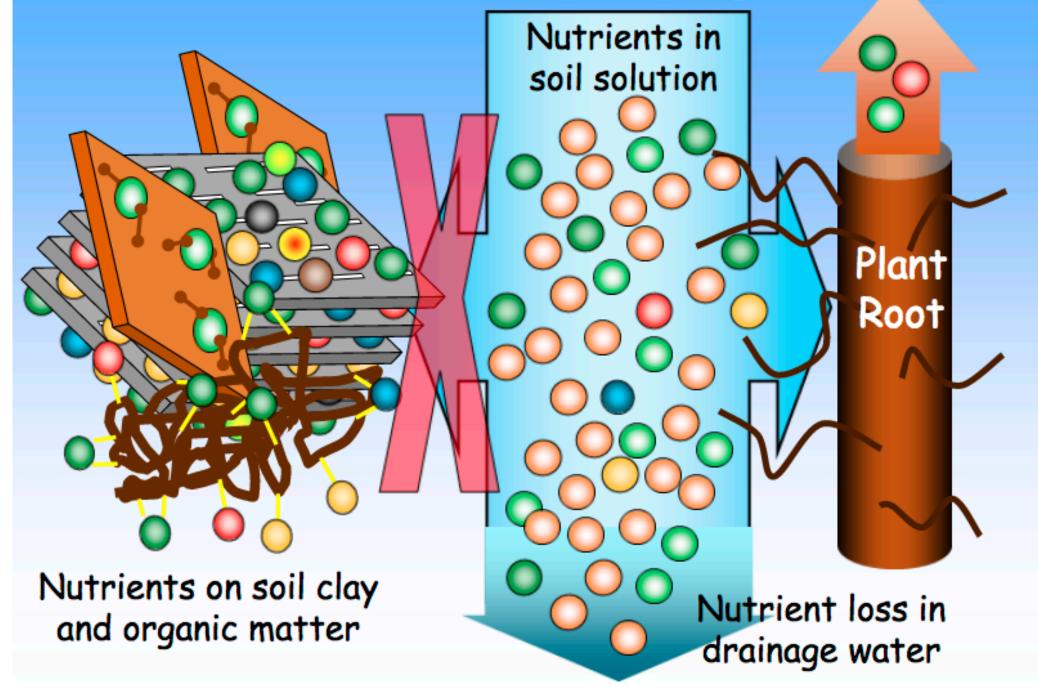
Low pH, 4 - 5 (acidic soil)

Neutral pH, @7 ("sweet" soil)

Job N Comp	lame: Michael Roc pany: Michael Roc		Soil Report Date: 2/21/2018 Submitted By:									
Sample	e Location		LG	LG	LG	Virgin						
Sample	e Farn	ned -	► Hog	RCK	нтс <	<u>Virgin</u>						
Lab Nu	ımber		158	159	160	Ground						
Sample	e Depth in inches		6	6	6							
Total E	Exchange Capacity (M. E.)		23.70	32.06	39.82							
pH of S	Soil Sample		8.1	8.7	8.7							
	c Matter, Percent		0.70	1.09	1.00	-						
	SULFUR:	p.p.m.	14	16	30							
ANIONS	Mehlich III Phosphorous:	as (P_O_) 2_5 lbs / acre	100	297	173							
EXCHANGEABLE CATIONS	CALCIUM: Ibs / acre	Desired Value Value Found Deficit	6446 7838	8720 10163	10829 12917							
	MAGNESIUM: lbs / acre	Desired Value Value Found Deficit	682 643 -39	923 1018	1146 1152							
	POTASSIUM: lbs / acre	Desired Value Value Found Deficit	739 435 -304	1000 1146	1242 1197 -45							
	SODIUM:	lbs / acre	40	36	52							
格	Calcium (60 to 70%)		82.68	79.24	81.11							
TION	Magnesium (10 to 20%)		11.30	13.23	12.06							
URA	Potassium (2 to 5%)		2.35	4.58	3.85							
SAT	Sodium (.5 to 3%)		0.37	0.25	0.28							
BASE SATURATION	Other Bases (Variable)		3.30	2.70	2.70							
8	Exchangable Hydrogen (10 to 1	5%)	0.00	0.00	0.00							
TS	Boron (p.p.m.)		0.39	0.69	0.94							
MEN	Iron (p.p.m.) Manganese (p.p.m.)		51 76	30 110	19 96							
FRACE ELEMENTS	Copper (p.p.m.)		1.4	0.98	0.66							
	Zinc (p.p.m.)		3.05	1.77	1.2							
Ħ	Aluminum (p.p.m.)	92	49	31								
OTHER												

Soils sample taken from a field in the desert south west with 9" annual precipitation

This is a Sandy soil (80% Sand) <u>Why the high CEC?</u>


High pH on all fields

NOTE:

The first sample has been farmed for some time; The two samples on the right where taken from virgin soil

Excessive Nutrient Loading

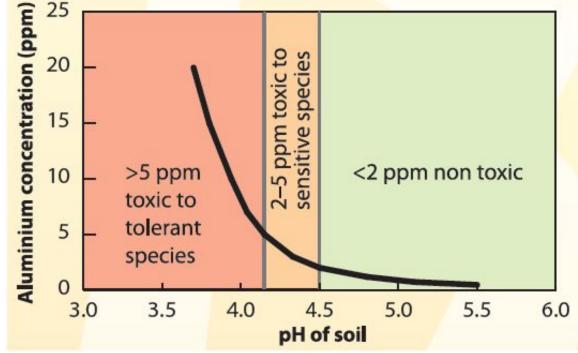
ORDER OF CATION AFFINITY

Table 4.3. Observed Order of Affinity of Divalent Metal Ions for Soil Organic Matter Related to Electronegativity

Affinity sequence	Cu	>	Ni	>	Pb	>	Co	>	Caª	>	Zn	>	Mn	>	Mg
Electronegativity (Pauling)	2.0		1.91		1.87		1.88		1.00		1.65		1.55		1.31

^aThe affinity of humus for the essential macronutrients, Ca^{2+} and K^+ , is (fortunately for plants and animals) higher than electronegativity would predict, suggesting that certain complexing or chelating groups in humus select for these metals on the basis of ionic size.

Al+3 and H+


BASIC SOIL-PLANT RELATIONSHIPS BUFFERING CAPACITY

- One of the most important chemical principles in soil chemistry and nutrient management is the soil buffer capacity (BC)
- However Cation Exchange Capacity (CEC) tells us how big the buffer is; and the %Base Saturation of a soil nutrient can provide an understanding of the soils ability to maintain the concentration of a nutrent in the soil solution.
- Far more important is the soils capacity to maintain the concentration of a nutrient in the soil solution.
- Example; Al⁺³ will desorb from the soil exchange sites when a soil is limed.

BASIC SOIL-PLANT RELATIONSHIPS *BUFFERING CAPACITY*

- Far more important is the soils capacity to maintain the concentration of a nutrient in the soil solution.
- Example; Al⁺³ will desorb from the soil exchange sites when a soil is limed.

BASIC SOIL-PLANT RELATIONSHIPS BUFFERING CAPACITY

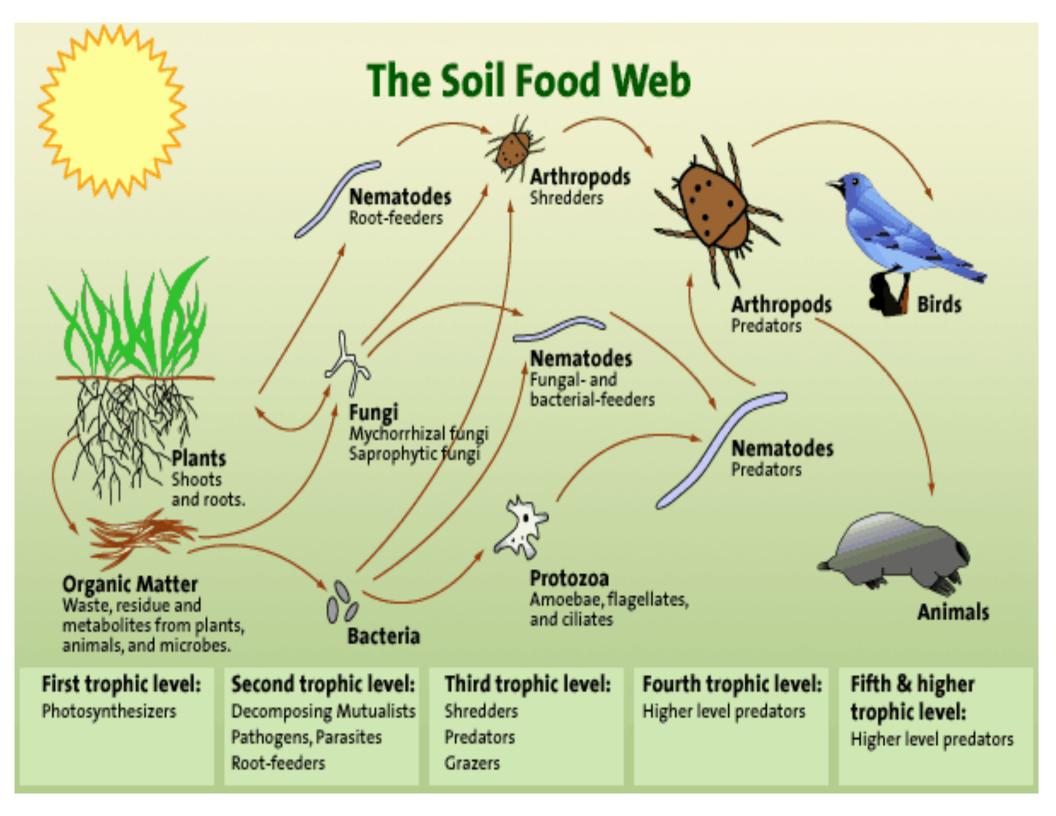
 Al⁺³ has a +3 positive charge, however it is largely responsible for soil pH, as Al⁺³ drives soil acidity.

BASIC SOIL-PLANT RELATIONSHIPS BUFFERING CAPACITY

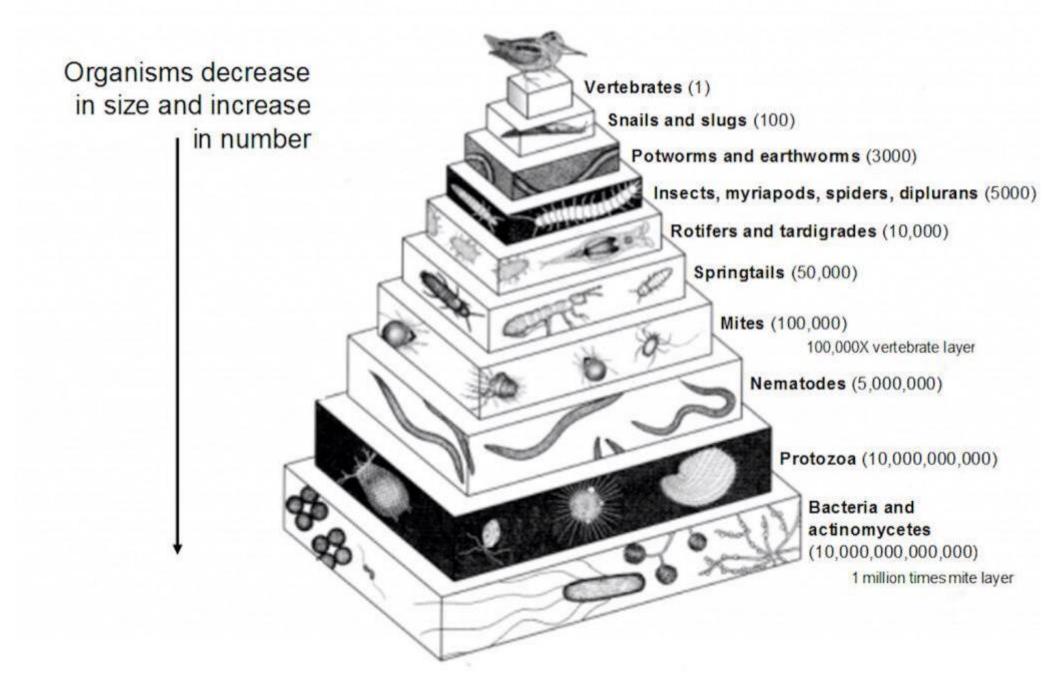
THE TAKE HOME:

- Soil with high CEC and low pH will have a higher buffering capacity; and there fore will require more lime to raise the soil pH.
- Soils with low CEC and low pH will have a lower buffering capacity; and therefore will require less lime to the soil raise pH.
- Neither case really looks at %BS of any of the soil cations; and raising the pH alone will not provide optimal growing conditions

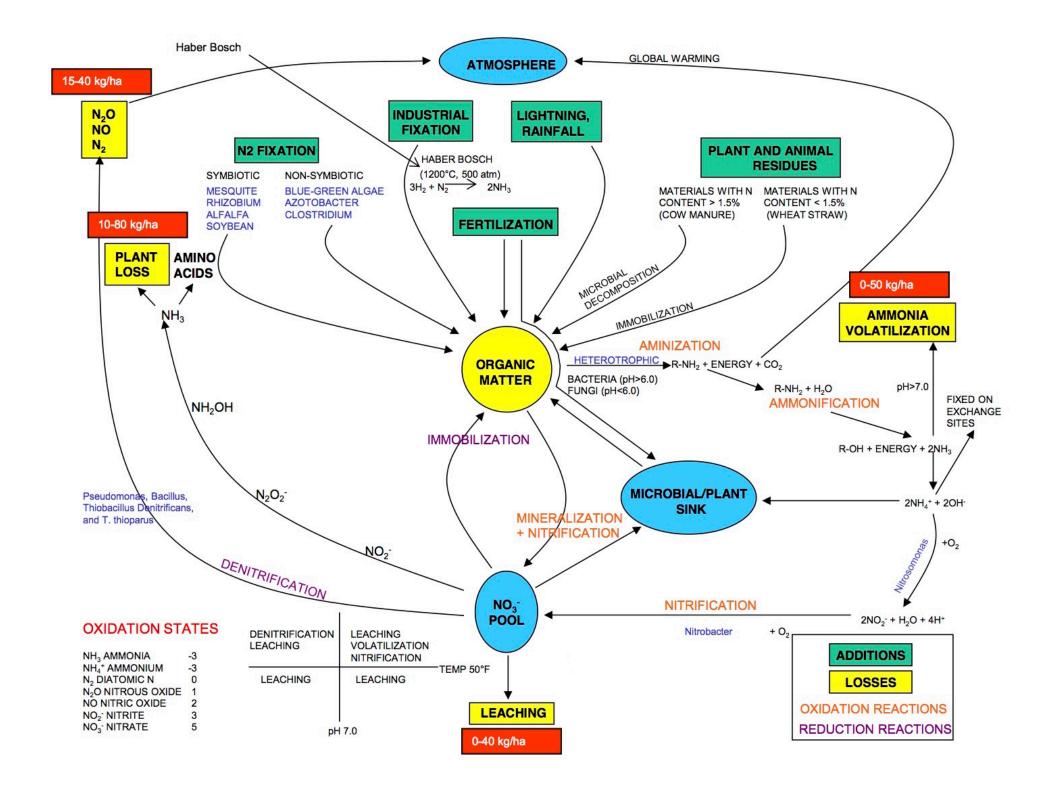
EXAMPLE

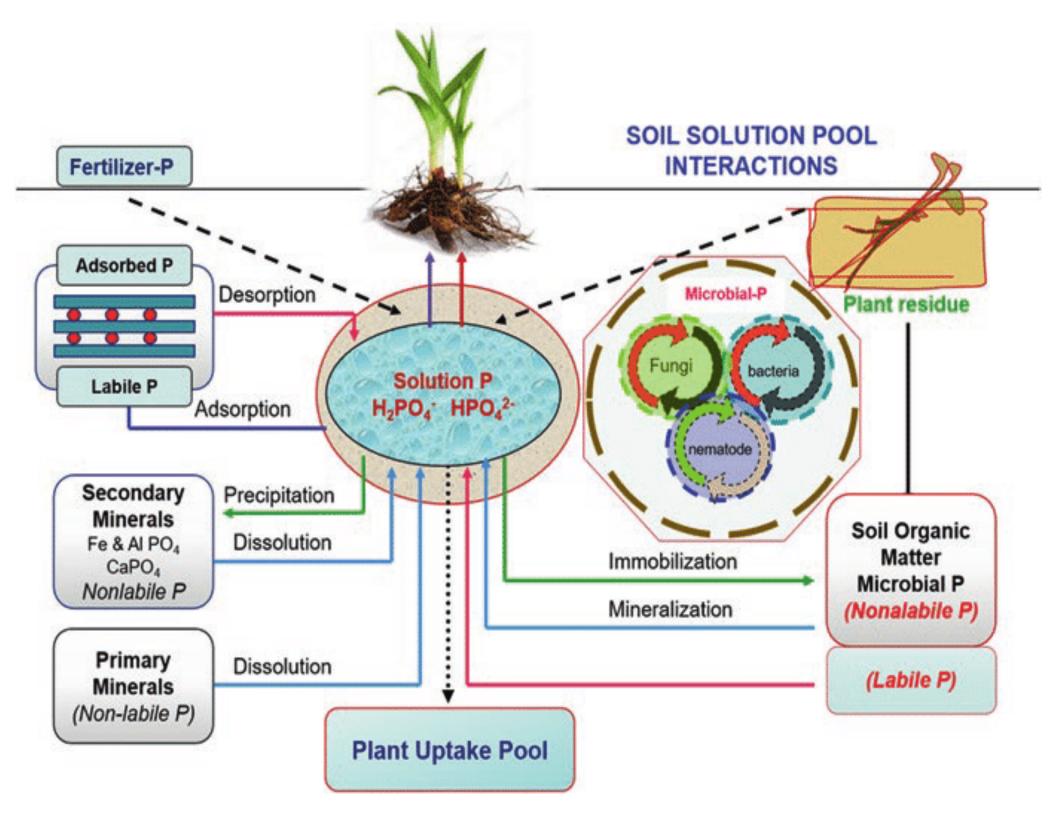

	Job Name: Rocky Trevizo Company: Five College Farms			Soil Report Date: 1/4/2019 Submitted By:						
		Sample Location		GH				•		
	Sample ID			4						
Most people	Lab Number			71						
	Sample Depth in inches			6						
would think	Total Exchange Capacity (M. E.)			30.91						
your crazy	pH of Soil Sample			8.8						
for liming	Organic Matter, Percent			27.71						
	ANIONS	SULFUR: p.p.m.		939						
this soil!		Mehlich III Phosphorous: as (P C lbs / acr	D) 5 re	1091					-	
	EXCHANGEABLE CATIONS	CALCIUM: Desired Ibs / acre Value F Deficit		8407 4472 -3935	>					
		MAGNESIUM: Desired Ibs / acre Value F Deficit		890 1517						
		POTASSIUM: Desired Ibs / acre Value F Deficit		964 9180) <u>K+</u> 2	² 10 X	C Gre	ater	then desired	1
		SODIUM: Ibs / acr	re	385						
Soil nutrient	BASE SATURATION %	Calcium (60 to 70%)		36.17						
		Magnesium (10 to 20%) Potassium (2 to 5%)		38.07						
<u>balancing is</u>		Sodium (.5 to 3%)		2.71						
<u>always more</u>		Other Bases (Variable)		2.60						
-		Exchangable Hydrogen (10 to 15%)		0.00					-	
<u>important then</u>	TRACE ELEMENTS	Boron (p.p.m.) Iron (p.p.m.)		4.29 94					-	
pH alone!		Manganese (p.p.m.)		72					-	
pir aione:		Copper (p.p.m.)		4.3						
	TRAC	Zinc (p.p.m.)		52.77					-	
		Aluminum (p.p.m.) Media Density g/cm3		75 0.43					-	
	OTHER			0.10						
]	

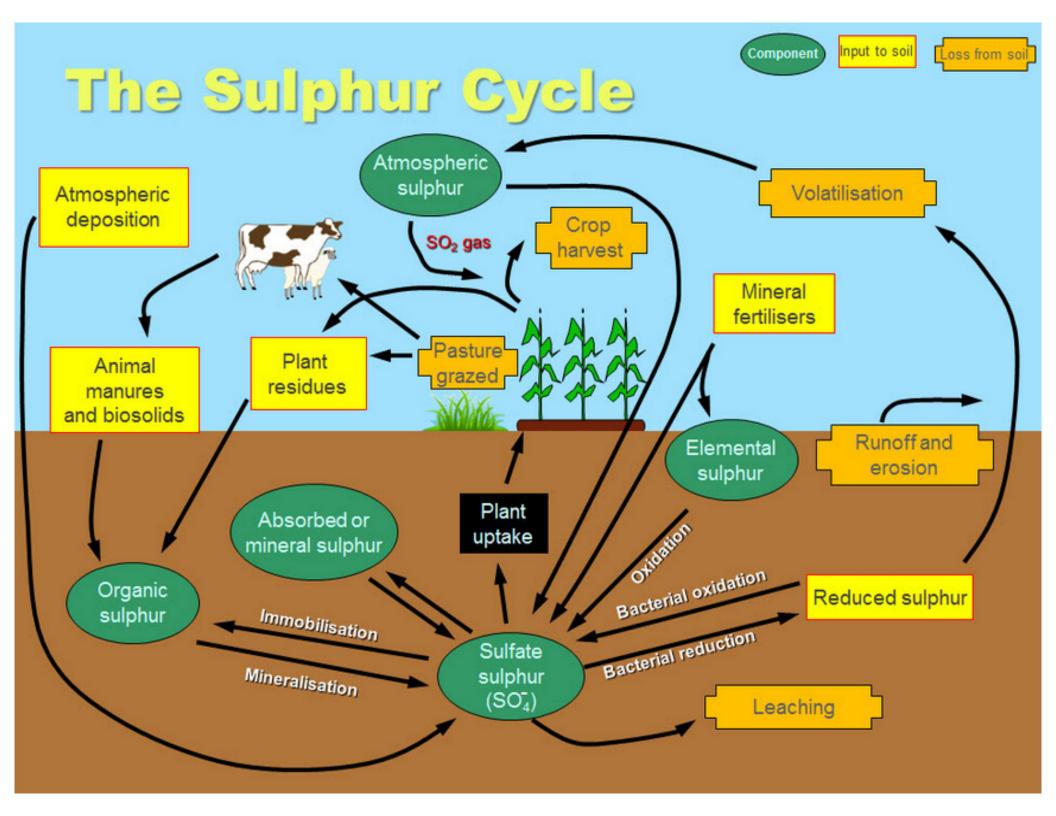
BASIC SOIL-PLANT RELATIONSHIPS


SUPPLY OF NUTRIENTS FROM ORGANIC MATTER

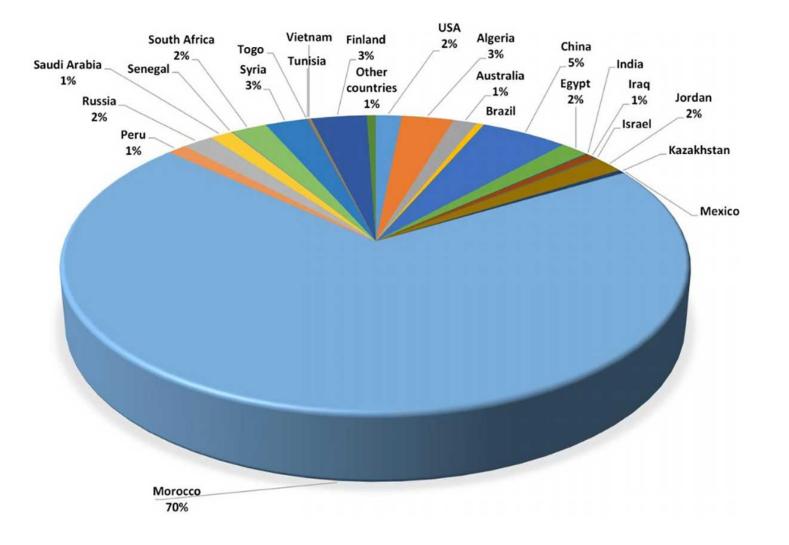
- Microbial activity and nutrient cycling through soil OM substantially impacts plant nutrient availability.
- Soil solution concentration of N, S, P, and several other micronutrients is intimately related to the microbial (organic) fraction in the soil


In one square meter of soil....



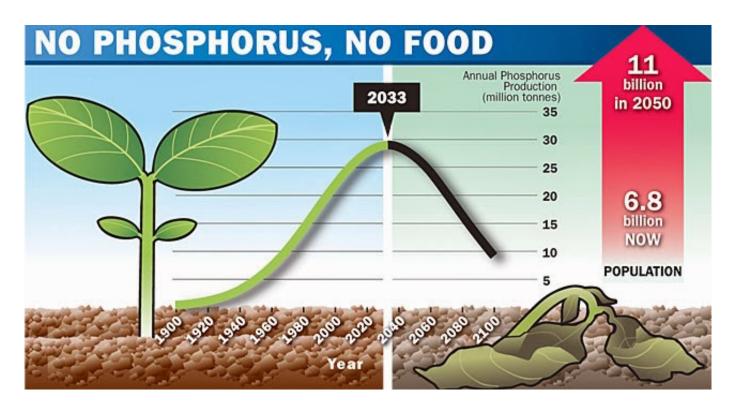

TWO MAJOR NUTRIENT CYCLES AND THE PREDOMINATE SOURCE OF THESE ANIONS

- Nitrogen cycle
- Phosphorus cycle
- Sulfur cycle



EXCESSIVE USE OF SYNTHETIC FERTILIZERS

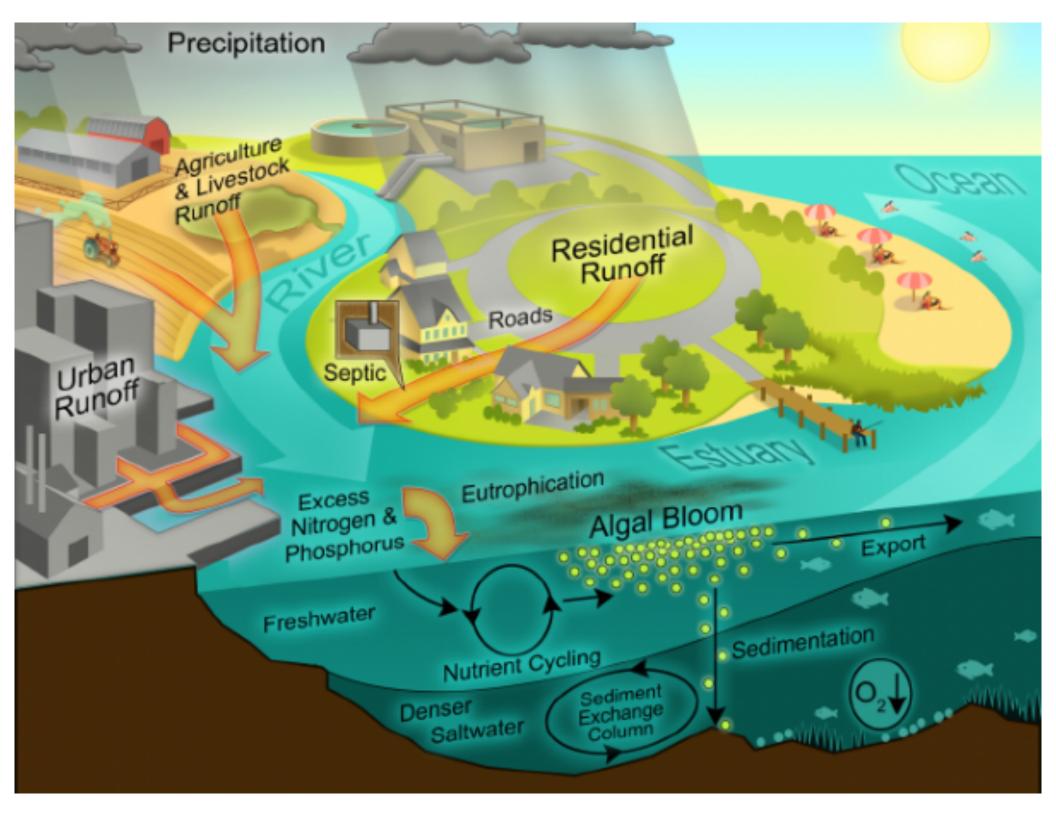
- The two nutrients of most concern
- Nitrate and Ammonium
- Phosphorus



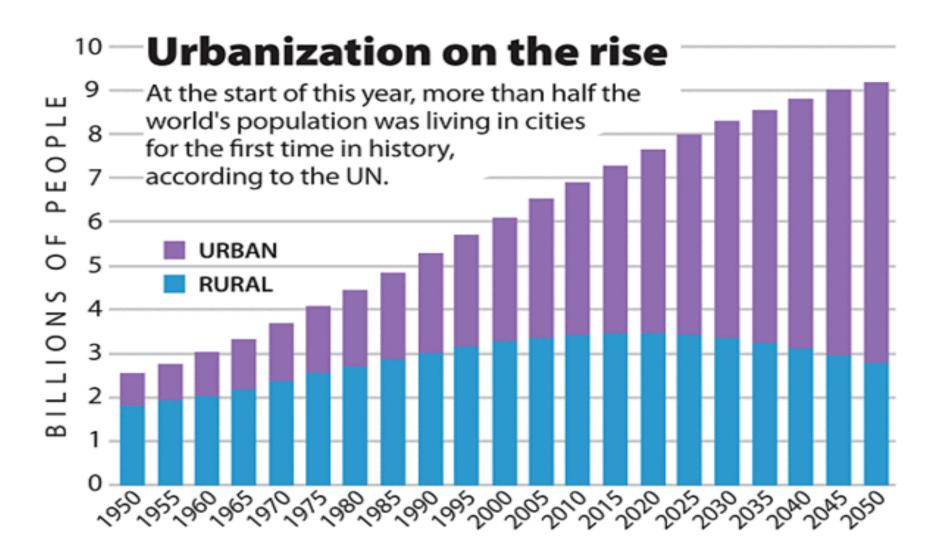
THE WOULD IS RUNNING OUT OF PHOSPHORUS, WHICH THREATENS GLOBAL FOOD SUPPLIES

PHOSPHORUS FERTILIZER RESTRICTIONS

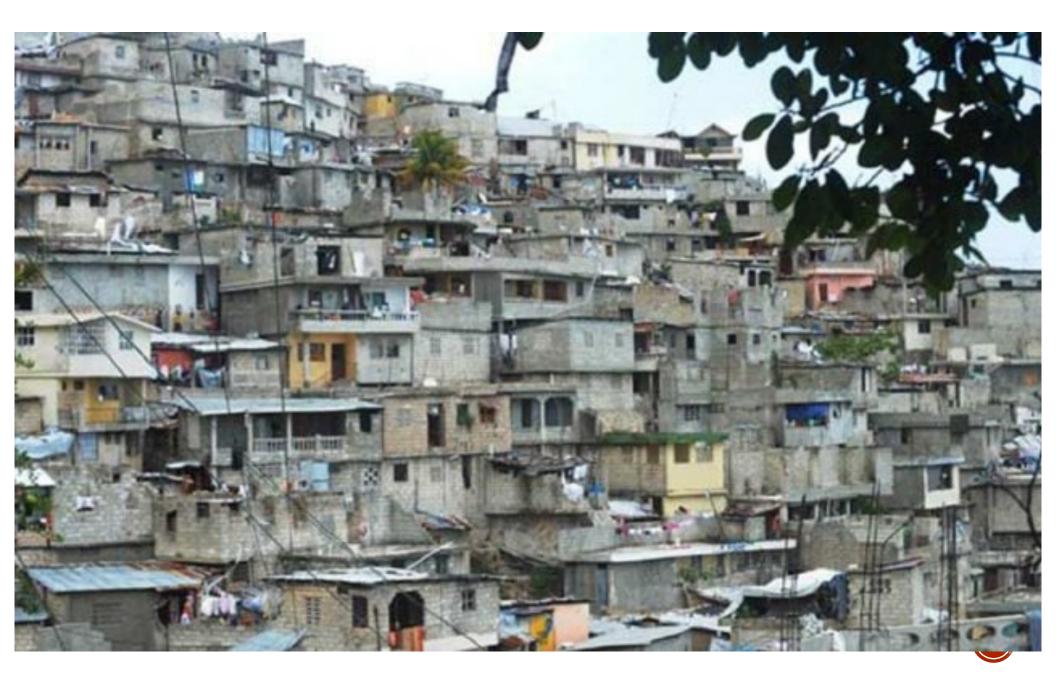
- World supply of Phosphorus is running out!!!
- This will lead to restricted use of phosphorus for future farming



A GOOD WAY TO SCARE YOURSELF IS BY GOOGLING "PHOSPHORUS SHORTAGE."


- Agriculture requires lots of phosphorus for fertilizer, and after it's spread on crops, most of it gets washed into the ocean, where it is irrecoverable. Without phosphorus, food production will plummet, unless people come up with new ways to grow food.
- Again and again the Lord has instructed that our people are to take their families away from the cities, into the country, where they can raise their own provisions, for in the future the problem of buying and selling will be a very serious one. We should now begin to heed the instruction given us over and over again: Get out of the cities into rural districts, where the houses are not crowded closely together, and where you will be free from the interference of enemies.— Selected Messages 2:141 (1904). LDE 99.4

"Properties will be offered for sale in the rural districts at a price below the real cost, because the owners desire city advantages, and it is these rural locations that we desire to obtain for our schools." PH012 13.1



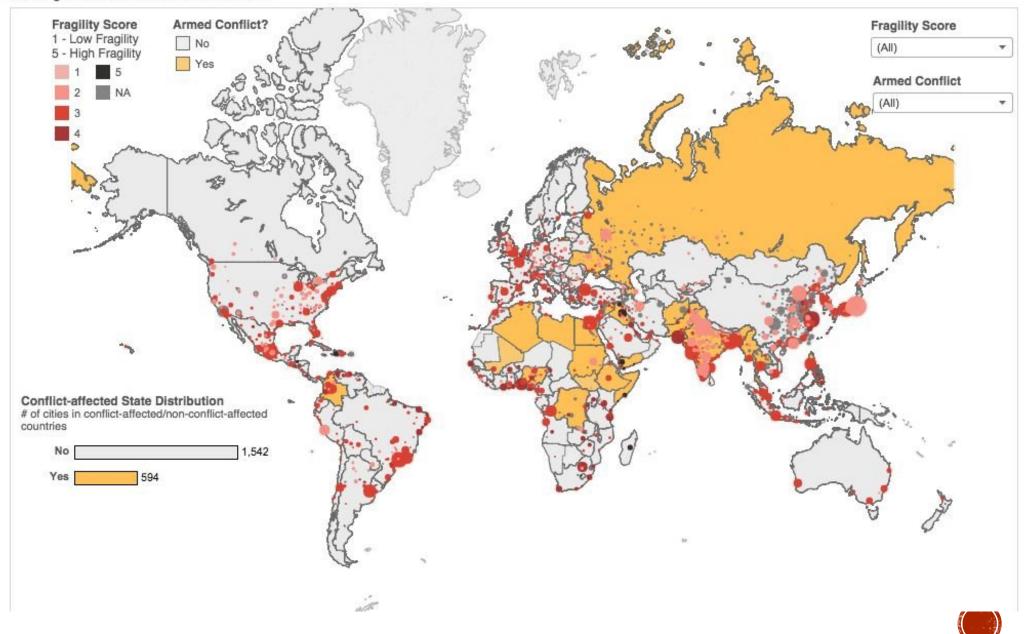
GOD INTENDED A BETTER WAY

Ignorance is doing its baleful work. Slothful servants are increasing the evil by their lazy habits. <u>Many are unwilling to</u> <u>earn their bread by the sweat of their brow, and they refuse to</u> <u>till the soil</u>. But the earth has blessings hidden in her depths for those who have courage and will and perseverance to gather her treasures. Fathers and mothers who possess a piece of land and a comfortable home are kings and queens. {OL 18.2}

PEOPLE IN CITIES NEED TO EAT

- As the population in Urban areas increases, so will the pressure on the worlds agro ecosystems
- Global mass consolidation of agricultural production is on the rise
- The "lone wolf" farmer is almost extent!

WHAT SAITH THE LORD


God does not design that men shall appropriate all that the earth produces for their own selfish purposes. He calls upon them to bring their tithes and offerings into His storehouse, that there may be meat in His house.

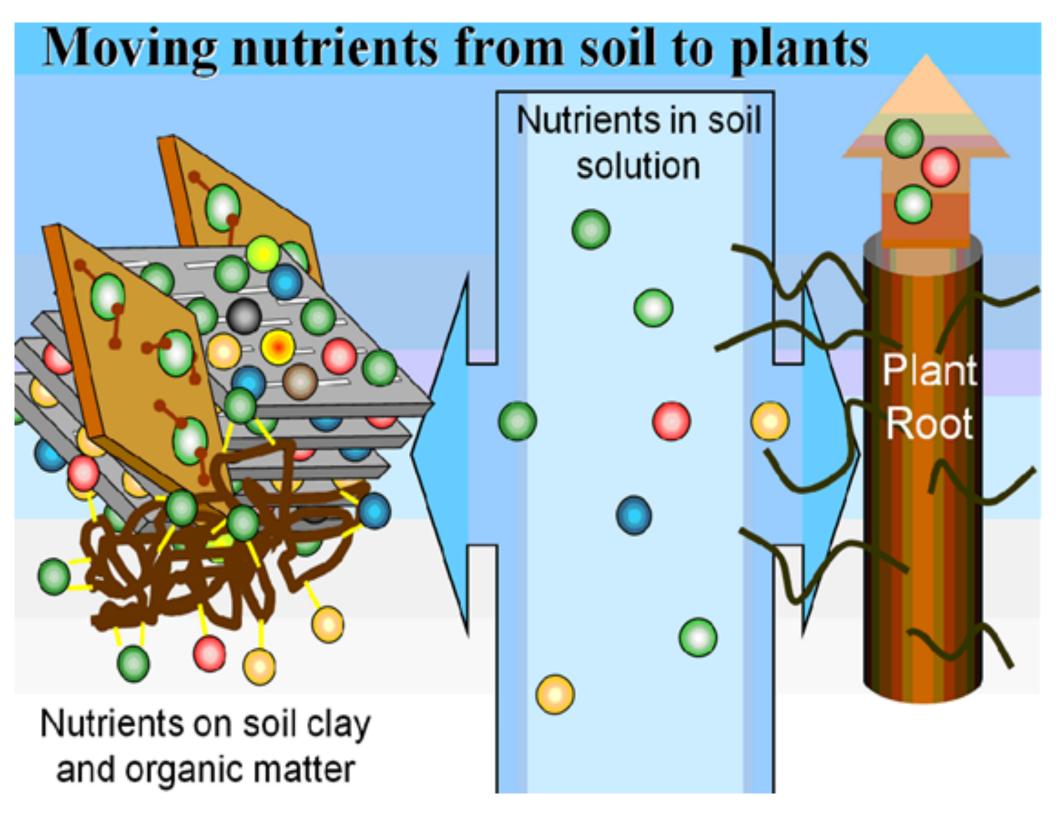
In <u>India, China, Russia</u>, and the <u>cities of America</u>, thousands of men and women are dying of starvation. The monied men, because they have the power, control the market. They purchase at low rates all they can obtain, and then sell at greatly increased prices. <u>This means starvation to the poorer</u> <u>classes, and will result in a civil war.</u> 5MR 305.3

Armed Conflicts

Are fragile cities restricted to war zones?

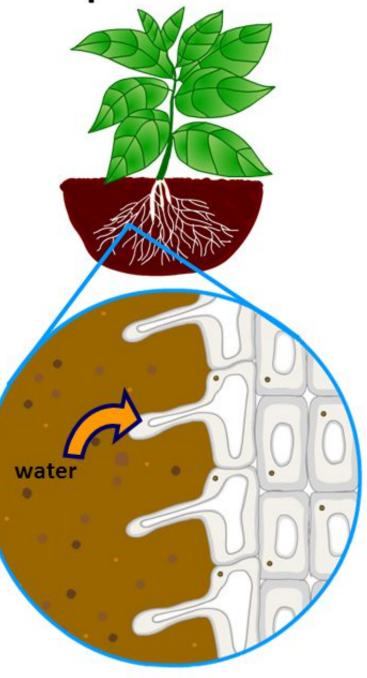
https://www.opencanada.org/features/how-cities-youve-never-heard-will-shape-future/

WHAT IS NEEDED?


 In the cultivation of the soil the thoughtful worker will find that treasures little dreamed of are opening up before him. <u>No one</u> <u>can succeed in agriculture or gardening without attention to the</u> <u>laws involved</u>. The special needs of every variety of plant must be studied. <u>Different varieties</u> require <u>different soil and</u> <u>cultivation</u>, and compliance with the laws governing each is the condition of success. Ed pg111

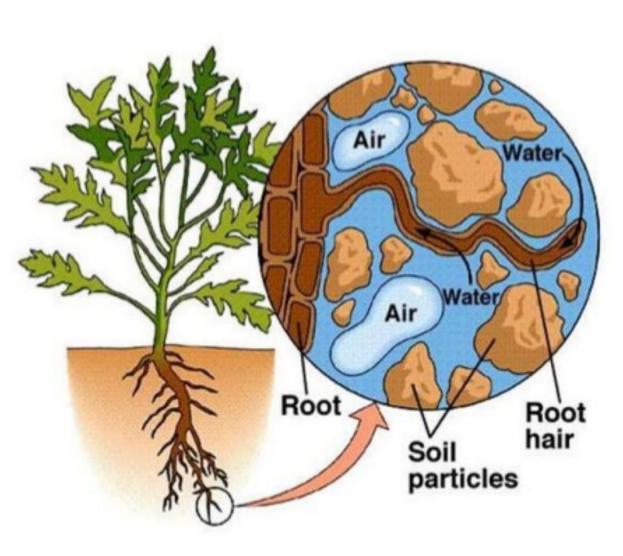
BASIC SOIL-PLANT RELATIONSHIPS

MOVEMENT OF IONS FROM SOILS TO ROOTS



How are roots adapted?

- Roots are branched and spread out for two reasons:
 - to absorb water (and mineral salts) from a large amount of soil.
 - to anchor the plant in the soil.
- Taking a closer look, roots are covered in root hair cells.


Root hair cells have **thin walls** and a **large surface area** to help them absorb lots of water.

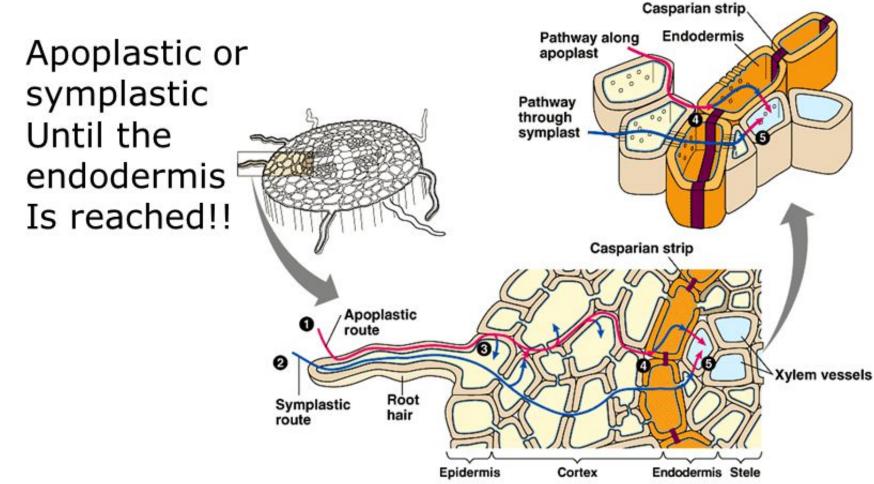
How are roots adapted to their job?

How are root hairs adapted for absorption?

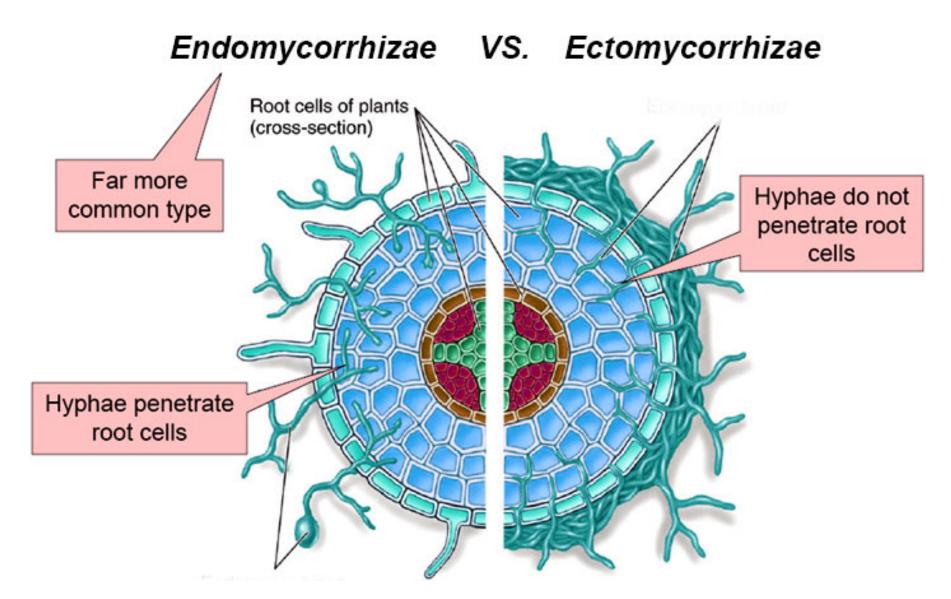
- 1. are long and provide a large surface area
- 2. have a thin cell wall

How do minerals enter plants?

Like water, minerals enter plants through the roots. However, they do this by different methods.

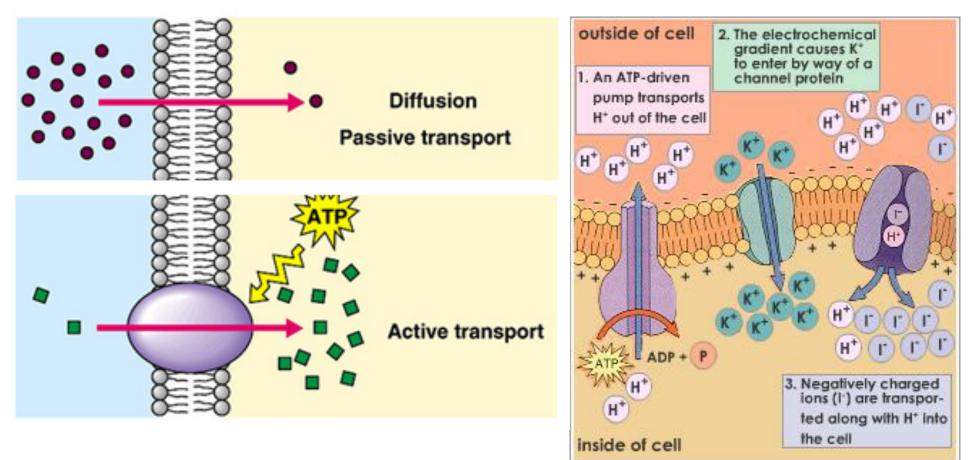

Water passively diffuses with a concentration gradient from the soil into the roots and up the stem.

Minerals are usually found in the soil in lower concentrations than they occur in the plant. Why can they not be transported by diffusion?


Diffusion cannot take place against a concentration gradient.

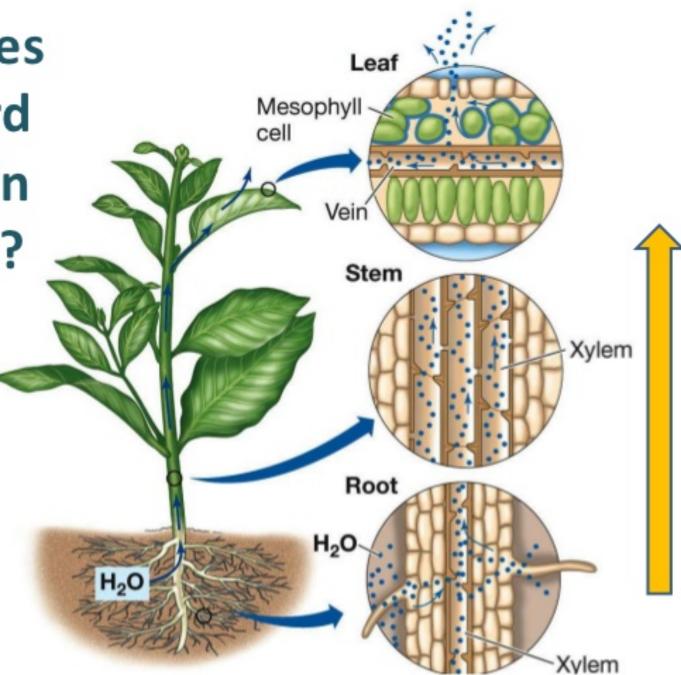
Instead, minerals enter the roots by active transport.

Water and Mineral Absorption – Water Transport in Roots


Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

 Well established mycorrchizae colonies on roots will work to prevent fungal pathogens from forming on plant root systems

ACTIVE AND PASSIVE TRANSPORT


To learn more watch this video

https://www.youtube.com/watch?v=KfvYQgT2M-k

What causes the upward flow within the xylem?

Mostly, evaporation of water by the sun.

BASIC SOIL-PLANT RELATIONSHIPS

ION ABSORPTION BY PLANTS

NITROGEN N

- Taken up by plants in two main forms
- Nitrate NO₃⁻

an anion that is taken up by plants easily; readily leaches from the soil and needs to be managed carefully in both organic and conventionally production systems.

Ammonium NH₄⁺

a cation that can be held on the the soil colloids however its not very stable and will be converted to nitrogen gas(NO₂) via microbial activity(nitrosomonas). Ammonium can be taken up by plants however plants prefer to uptake nitrate, and will have to convert ammonium to nitrate in the plant, if excesses ammonium is used this can lead to sudden pH drop in hydroponic production system. Ammonium will lower the pH of a soil and is preferred over nitrate in alkaline soils.

PHOSPHORUS

- Plants uptake phosphorus in the form of Orthophosphate (H₂PO₄⁻) & (HPO₄⁻²)
- Important for DNA/RNA and energy production in plants(ATP)
- Visual deficiency symptoms include overall stunting of the plant and a darker green coloration of leaves. Some times in some crops a purples color will appear.
- Soils deficient in P should be amended to correct deficiency; annual plants should be inoculated with Endomycorrhizae and Ectomycorrhizae.

EFFECT OF ENDOMYCORRHIZA ON P NUTRIENT CONTENT IN CORN SHOOTS

		Cantanti			
Nutrient	No		25 ppm P Added		
	No Mycorrhiza	Mycorrhiza	No Mycorrhiza	Mycorrhiza	
P	750	1,340	2,970	5,910	
К	6,000	9,700	17,500	19,900	
Ca	1,200	1,600	2,700	3,500	
Иg	430	630	990	1,750	
Zn	28	95	48	169	
Cu	7	14	12	30	
Mn	72	101	159	238	
e	80	147	161	277	

POTASSIUM

- 7th most abundant element ~2.5% in the earths crust
- Generally absorb by plants in amounts larger then any other nutrient except Nitrogen

K

- High weather soils are generally low in K
- Low K levels in crop are seen as small fruit sets and reduction in yields
- K is essential for photosynthesis through several functions including: ATP synthesis production and activity of specific photosynthetic enzymes CO2 absorption through leaf stomates maintenance of electroneutrality during photophosphorylation in chloroplasts

CALCIUM CA

- Ca⁺² in plants ranges from 0.2% to 1.0%; is essential to cell wall membrane structure and permeability.
- Low Ca⁺² weakens cell membranes, resulting in increase permeability, loss of cell contents, and failure of nutrientuptake mechanisms.
- Ca⁺² and other cations neutralize organic acids formed during normal cell metabolism.
- Ca⁺² is important to N metabolism and protein formation by enhancing NO₃⁻ uptake
- Ca⁺² also provides some regulation of cation uptake; e.g. K⁺ and Na⁺ uptake are equivalent in absence of Ca+2, but in its presence K⁺ uptake greatly exceeds Na⁺ uptake.

SULFUR

- Plant absorbable S is an anion in the from of SO_4^-
- Most soil SO₄⁻ is associated with OM decay and the Sulfur cycle

C

- S and Mg are taken up by plants in similar quantity as P; but in lower quantities then Ca⁺²
- Ca⁺² and Mg⁺² behave in similar ways as K⁺
- S⁰ is a form of elemental sulfur, and is used to amend soil sulfur deficiencies; and for lowering soil pH

MAGNESIUM MG

- Like other cations, is available in ion Mg⁺² and should represent around 10% to 20% of the soils base saturation
- Needed for chlorophyll (15%-20% of total Mg⁺² in plants)
- Deficient plats will see protein N decreases while non-protein N increases. (inviting phloem feeding insects; e.g. aphids)
- Very important for plant metabolism (Krebs cycle, cellular respiration photosynthesis, glycolysis)

MICRONUTRIENTS

Iron Fe Zinc Zn Cu Copper Manganese Mn Boron В Chloride Cl Molybdenum Мо Nickel \mathbf{NI}

Job Name: Five College Farms Company: Five College Farms			Soil Report Date: 7/29/2016 Submitted By:				
Sample Location			RDW	RDS	RD276	RD258	
Sample ID							
Lab Number			34	35	36	37	
Sample Depth in inches			8	8	8	8	
Total Exchange Capacity (M. E.)			6.24	4.94	5.27	3.95	
pH of Soil Sample		5.2	6.1	5.9	5.2		
Organie	Organic Matter, Percent		4.16	2.26	2.71	3.45	
ANIONS	SULFUR:	p.p.m.	21	15	15	22	
ANIC	Mehlich III Phosphorous:	as (P_O_) lbs / acre	2114	1505	1317	1186	
EXCHANGEABLE CATIONS	CALCIUM: Ibs / acre	Desired Value Value Found Deficit	2261 1404 -857	1793 1766 -27	1912 1723 -189	1431 957 -474	
	MAGNESIUM: Ibs / acre	Desired Value Value Found Deficit	239 184 -55	200 184 -16	202 224	200 73 -127	
	POTASSIUM: Ibs / acre	Desired Value Value Found Deficit	259 119 -140	205 101 -104	219 59 -160	200 81 -119	
	SODIUM:	lbs / acre	27	23	25	20	
s z	Calcium (60 to 70%)		42.22 9.22	66.96	61.27	45.47	
BASE SATURATION %	Magnesium (10 to 20%) Potassium (2 to 5%)		9.22	11.63 1.96	13.28 1.08	5.78 1.97	
ATU	Sodium (.5 to 3%)		0.69	0.75	0.76	0.82	
ISE S	Other Bases (Variable)		7.00	5.20	5.60	7.00	
BP	Exchangable Hydrogen (10 to 15	5%)	39.00	13.50	18.00	39.00	
S	Boron (p.p.m.)		0.37	0.37	0.37	0.37	
IEN	Iron (p.p.m.)		256	166	212	206	
ELEN	Iron (p.p.m.) Manganese (p.p.m.)		24	26	23	18	
111	Copper (p.p.m.)		3.56	2.38	9.19	10.9	
TRACI	Zinc (p.p.m.) Aluminum (p.p.m.)		9.01 1239	3.45 1281	6.49 1168	3.33 1289	
OTHER							
0							

Soils sample taken from a field

GOAL FOR THIS EXAMPLE

- %65 BS for Ca
- %15 BS for Mg
- %4 BS for K
- %2 BS for Na
- %10 BS for H
- %5 BS for other Cations

MATH REQUIRED

I need to know total CEC Pounds of each cation needed to fully saturate a CEC of 1

MATH REQUIRED

- Fe and Mn tend to complex in the soil and at not necessarily occupying space in the soil colloids.
- Mo is taken up by plants as a anion and is there for not on the CEC
- Co was not test so I will not account for it
- Al drives acidity and is need by plants in only small quantities
- Anion Exchange Capacity is negligible and is not accounted for through this means.

WHAT WE KNOW

 A cation exchange capacity (CEC) of 1 mmol/100g of soil simply telling us:

.001 moles of – ionic charges per ever 100g of soil moles is Avogadro's number(6.03 X 10²⁴ – ions) This number can also be express as .00001 mols/g of soil

- 1 acre 6" deep on average weighs 2,000,000 lbs or 907,200,000g/acre X .00001 moles/g of soil = 9072 mol/acre of – ion charges
- Now we need to know how many grams of a given cation can be held onto the colloids for each

CALCULATING CATIONS NEEDED

- 907,200,000g/acre X .00001 moles/g of soil = 9072 mol/acre of – ion charges
- 9072 mol/acre of anion charges can be neutralized with the same amount of + cation charges

$$\frac{40\frac{g}{mol}Ca^{+2} \times 9072\frac{mol}{acre}}{+2/Ca} = \frac{90720gCa^{+2}}{453.6\frac{g}{lbs}} = 400\frac{lbsCa}{acre}$$

$$\frac{40\frac{g}{mol}Ca^{+2} \times 9072\frac{mol}{acre}}{+2/Ca} = \frac{90720gCa^{+2}}{453.6\frac{g}{lbs}} = 400\frac{lbsCa^{+2}}{acre}$$

$$\frac{24.3 \frac{g}{mol} Mg^{+2} x 9072 \frac{mol}{acre}}{+2/Mg} = \frac{220,449gMg^{+2}}{453.6 \frac{g}{lbs}} = 486 \frac{lbsMg^{+2}}{acre}$$

$$\frac{39\frac{g}{mol}K^{+}x9072\frac{mol}{acre}}{+1/K} = \frac{353808gK^{+}}{453.6\frac{g}{lbs}} = 780\frac{lbsK^{+}}{acre}$$

$$\frac{23\frac{g}{mol}Na^{+}x\,9072\frac{mol}{acre}}{+1/Na} = \frac{208656gNa^{+}}{453.6\frac{g}{lbs}} = 460\frac{lbs\,Na^{+}}{acre}$$

UNDERSTANDING THE CALCULATIONS

- CEC X lbs of desired cation x desired %BS = lbs/acre of element cations desired
- e.g. CEC 10 x 400 lbs of Ca⁺² X 65% BS Ca⁺² = 2600lbs/acre of Ca⁺²
- Subtract our value found... say 1000lbs/acre = 1600lbs/acre needed

Job N Comp	ame: Five College		Soil Report Date: 7/29/2016 Submitted By:)
Sample Location		RDW	RDS	RD276	RD258		
Sample ID							
Lab Number			34	35	36	37	
Sample Depth in inches		8	8	8	8		
Total Exchange Capacity (M. E.)		6.24	4.94	5.27	3.95		
pH of Soil Sample		5.2	6.1	5.9	5.2		
Organic Matter, Percent		4.16	2.26	2.71	3.45		
SNO	SULFUR:	p.p.m.	21	15	15	22	
ANIONS	Mehlich III Phosphorous:	as (P_O_) 1bs / acre	2114	1505	1317	1186	
EXCHANGEABLE CATIONS	CALCIUM: Ibs / acre	Desired Value Value Found Deficit	2261 1404 -857	1793 1766 -27	1912 1723 -189	1431 957 -474	
	MAGNESIUM: Ibs / acre	Desired Value Value Found Deficit	239 184 -55	200 184 -16	202 224	200 73 -127	
	POTASSIUM: Ibs / acre	Desired Value Value Found Deficit	259 119 -140	205 101 -104	219 59 -160	200 81 -119	
	SODIUM:	lbs / acre	27	23	25	20	
*	Calcium (60 to 70%)		42.22	66.96	61.27	45.47	
BASE SATURATION %	Magnesium (10 to 20%) Potassium (2 to 5%)		9.22	11.63 1.96	13.28 1.08	5.78 1.97	
ATUF	Sodium (.5 to 3%)		0.69	0.75	0.76	0.82	
SE SI	Other Bases (Variable)		7.00	5.20	5.60	7.00	
BA	Exchangable Hydrogen (10 to 15	%)	39.00	13.50	18.00	39.00	
S	Boron (p.p.m.)		0.37	0.37	0.37	0.37	
IENT	Iron (p.p.m.) Manganese (p.p.m.) Copper (p.p.m.)		256	166	212	206	
LEN			24	26	23	18	
			3.56	2.38	9.19	10.9	
TRACE	Zinc (p.p.m.)		9.01	3.45	6.49	3.33	
~	Aluminum (p.p.m.)		1239	1281	1168	1289	
OTHER							

Soils sample taken from a field

We will attempt to balance this soil with

%BS Ca 65% %BS Mg 15% %BS K 4% %BS Na 2%

Logan Labs, LLC

NOW WE CALCULATE OUR DESIRED SOIL NUTRIENT LEVELS

CEC 6.24 x (8/6) x 400lbs/A Ca X 65% Value found Needed	=	2157.8lbs/A 1404 lbs/A 754 lbs/A
CEC 6.24 x (8/6) x 243lbs/A Mg x 15% Value found Needed	= =	302.5 lbs/A 184 lbs/A 118.5 lbs/A
CEC 6.24 x (8/6) x 780lbs/A K x 4% Value found Needed	= =	258.9 lbs/A 119 lbs/A 140 lbs/A
CEC 6.24 x (8/6) x 480lbs/A Na x 2% Value found Needed	= =	79.7 lbs/A 27 lbs/A 53 lbs/A

AGRICULTURAL MISSIONARIES

 God would be glorified if men from other countries who have acquired an intelligent knowledge of agriculture, would come to this land, and by precept and example teach the people how to cultivate the soil, that it may yield rich treasures. Men are wanted to educate others how to plow, and how to use the implements of agriculture. Who will be missionaries to do this work, to teach proper methods to the youth, and to all who feel willing and humble enough to learn? FE 324.1

