

Induction "The liquid Carbon pathway"

- 1. Full Capacity Photosynthesis Most crops can produce as much as 3-5 times more photosynthetic energy than they typically do.
- 2. Sugars are released as root exudates. Bacterial Populations develop rapidly to utilize these sugars.
- 3. As bacterial populations develop, they extract minerals from the soil mineral matrix to build their own cells.
- 4. Plants absorb microbial metabolites and become exceptionally energy efficient, resulting in the development of elevated lipid levels.
- 5. Lipids are exuded from the roots and are digested by soil fungal populations, which expand rapidly.
- 6. Fungal digestion of lipids results in the formation of stable humic substances with long half lives.

Green manure, cover cropping

- Strive to keep something growing on the soil at all times.
- Maximize the diversity of plant families.
- Companion planting, inter seeding, over seeding, independent seeding

Helpful information sources: SARE – "Managing Cover Crops Profitably"

Trueleaf Market - Cover Crop Growing Guide

Green Cover Seed – Soil Health Resource Guides

Bacteria

- Nitrogen fixers
 (Rhizobium,
 Azotobacter,
 Cyanobacteria)
- 2. Nitrifiers (aerobic)
- 3. De-Nitrifiers (anaerobic)
- Decomposers –
 (Actinomycetes)

Archea

1. Similar functions to bacteria but can live in more extreme conditions.

Fungi

- 1. Saprophytes
- Mutualists
 (VAM, Ecto, Ericoid)
- 3. Pathogenic (Pythium, Rhizoctonia, Phytothora, Verticillium)

Protazoa

- 1. Ciliates
- 2. Amoebae
- 3. Flagellates

Nematodes

- 1. Saprophites
- 2. Predators
- 3. Parasites

Earthworms

- 1. Recycling
- 2. Increase nutrient availability
- 3. Improve soil structure

THE PLANT MICROBIOME

What is contained in bacterial cell walls? Nitrogen!!!

- Gram bacteria = amino acids = alanine, glutamic acid, diaminopimelic acid
- Gram + bacteria = amino acids = alanine, glutamine, lysine, glycine

A. Three Beneficial Outcomes of Rhizophagy Symbiosis

3. Soil fungal pathogens have reduced virulence

2. Increased oxidative stress tolerance in plants

1. Plants absorb nutrients from microbes

1

Soil fungi drained of nutrients by rhizophagy cycle microbes

Increased reactive oxygen activity in root cells

Rhizophagy microbes enter plant roots with nutrients

The plant takes nutrients from rhizophagy cycle microbes, and provides photosynthate to soil microbes.

B. Nutrient Flow

Rhizophagy cycle microbes take nutrients from microbial community.

The soil microbial community liberates and absorbs nutrients from soil.

Rhizophagy cycle microbes modulate development of seedlings

- Microbes trigger the gravitropic response in roots
- Microbes trigger root hair elongation
- Microbes increase root branching
- Microbes increase root and shoot elongation

Tomato seedling hair initial with internal replicating bacteria (arrow).

Bacteria in carrot root epidermis cells

