Scalng Up Your Composting AdAgrA 2025

Daniel Nicholls

Connection Question:

What do you think are the biggest benefits and the biggest drawbacks to amending with compost?

Please remember to hold all questions until the end of the presentation.

There will be a Q&A time at the end.

Who am I?

Who am I?

Daniel Nicholls Agriculture Director at Holbrook Indian School

Can you make enough compost to amend your entire farm/garden?

Let's calculate how much compost you'll need to make:

Let's calculate how much compost you'll need to make:

Square Feet X 144 = Square Inches

Let's calculate how much compost you'll need to make:

Square Inches X depth of compost = Cubic Inches

Let's calculate how much compost you'll need to make:

Cubic Inches / 1,728 = Cubic Feet

Let's calculate how much compost you'll need to make:

Cubic Feet / 27 = Yards

Need to source materials

Manure from local farms

*cow manure is the lowest in phosphorus

Food waste: Yours, local restaurants, cafeteria

Garden waste:

From farm when cleaning out beds, Wood chips

lawn clippings, rake neighbor's leaves,

Find a good mixture

Carbon to Nitrogen Ratio

30:1 by weight

Carbon sources: Paper waste, leaves, wood chips, straw, animal bedding, saw dust, *biochar

Nitrogen sources: Plant matter, manures

Organic material

Hog manure

Poultry manure (fresh)

Poultry manure (with litter)

Vegetable wastes

Coffee grounds

Cattle manure

Grass clippings

Horse manure (fresh)

C:N
5 to 7:1
10:1
13 to 18
12 to 20
20:1
20:1
12 to 25
25:1

3:1
):1
5:1

Grass clippings	12 to 25
Horse manure (fresh)	25:1
Horse manure (with litter)	30 to 60
Corn stalks	60:1
Straw	40 to 10
Bark	100 to 1
Paper	150 to 2
Wood chips, sawdust	200 to 5
Wood	700:1

:1
:1
0:1
30:1
00:1
00:1

https://extension.missouri.edu/publications/g6956

Get it tested!

You need to know what you are putting in your soil — especially if you are using large amounts of it every year

Scaling Up

Recommended Tool: Composting Thermometer

3 Bin Method

Bin Nethod Can be inexpensive Need to mix by hand

 Small batches (1/2 to 2 yards/batch) Takes several months (4 minimum)

Windrows

Windrows

Very large batches
Cost almost nothing (if you have a tractor; a turner can be pricey)
Can be challenging to keep it moist
Takes several months (4 minimum)

Johnson-Su Bioreactor

Johnson-Su Bioreactor Can be low cost • No mixing Makes about 1 yard per batch Need to learn how to make and use Takes 1 year per batch

Aerated Static Pile

Cover layer (biocover) of compost or amendment

Positive pressure

Well-mixed feedstocks

Woodchip air plenum

Aeration laterals Pipes with drilled holes

Positive pressure

Manifold or "header"

Fan

Aerated Static Pile

 Cured compost in 30 days • No mixing Can be scaled to any size

Complex setup (can be expensive)

Cover layer (biocover) of compost or amendment

Positive pressure

Well-mixed feedstocks

Woodchip air plenum

Aeration laterals Pipes with drilled holes

Positive pressure

Manifold or "header"

Fan

Pipes on Grade

Aeration Plenum Layer

- Wood Chips
- Screen-Overs

Rule of Thumb: Max Pile Length 75 – 80-feet

COMPOSTING

PERFORATED PIPES

AIR BLOWER

Resources: Perry Labs for soil and compost testing

perryaglab.com

Besources

biocycle.net o2compost.com blog

for information on ASP composting

Besources

Regeneration International NMSU paper

for bioreactor design and details

Resources:

Book

Compost Science For Gardeners by Robert Pavlis

compost science for gardeners

Simple Methods for Nutrient Rich Soil

ROBERT PAVLIS

Besources

Book

Community Scale Composting Systems by James McSweeney

Resources

Book

The Living Soil Handbook by Jesse Frost

BESOURCES

Book

Teaming with by Jeff Lowenfels

TEAMING **NITH** MICROBES

The Organic **Gardener's Guid** to the Soil Food Web **REVISED EDITION**

JEFF LOWENFELS & WAYNE LEWIS

TEAMING TH FUNGI

The Organic **Grower's Guide** to Mycorrhizae JEFF LOWENFELS

TEAMING WITH **NUTRIENTS**

The Organic **Gardener's Guide** to Optimizing **Plant Nutrition**

JEFF LOWENFELS Author of Teaming with Microbes

TEAMING BACTERIA

The Organic Gardener's **Guide to Endophytic** Bacteria and the Rhizophagy Cycle **JEFF LOWENFELS**

series

Questions